GCE Examinations

Advanced Subsidiary / Advanced Level

Mechanics
 Module M1

Paper I

MARKING GUIDE

Abstract

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

M1 Paper I - Marking Guide

1. $(2 p \mathbf{i}-3 q \mathbf{j})+(5 q \mathbf{i}+4 p \mathbf{j})=^{-} 2 \mathbf{i}+9 \mathbf{j}$ M1
equating coeffs of \mathbf{i} and \mathbf{j} gives $\quad 2 p+5 q={ }^{-} 2$ $4 p-3 q=9 \quad$ M1 A1
solve simult. to give $p=\frac{3}{2}, q={ }^{-} 1$
2. (a)

B2

(b) resolve // to plane: $20-W \sin 25=0$
$W=\frac{20}{\sin 25}$ so $W=47.3 \mathrm{~N}(3 \mathrm{sf})$
resolve perp. to plane: $R-W \cos 25=0$
$R=47.324 \times \cos 25=42.9 \mathrm{~N}(3 \mathrm{sf})$
(c) (i) particle
(ii) inextensible B1
(d) $\quad W$ and R will both be lower

B2
3. (a) mag. of impulse is same as cannon on shell
impulse $=\Delta$ mom $=3(200-0)=600$ Ns (towards cannon)
B1
for cannon, $m v-m u=600$
$600 v=600$ so $v=1 \mathrm{~ms}^{-1} \quad$ M1 A1
(c) $R=m g{ }^{-} F=m a$

M1
but $F=\mu R \quad \therefore a=\frac{-\mu R}{m}=\frac{-\mu m g}{m}={ }^{-} \mu g$
M1 A1
use with $u=1, v=0$
M1
$v^{2}=u^{2}+2 a s$, so $0=1-2(0.75)(9.8) s$
M1
$s=0.0680 \mathrm{~m}=7 \mathrm{~cm}$ (nearest cm) A1
4. (a) displacement of plane $=(32 \mathbf{i}+19 \mathbf{j})-(80 \mathbf{i}+5 \mathbf{j})$

$$
=-48 \mathbf{i}+14 \mathbf{j} \text { in } 10 \text { mins. }
$$

A1
\therefore in 30 mins, displacement $=3 \times\left({ }^{-} 48 \mathbf{i}+14 \mathbf{j}\right)={ }^{-} 144 \mathbf{i}+42 \mathbf{j}$
so posn. vector at $2: 30$ p.m. is $(-64 \mathbf{i}+47 \mathbf{j})$
(b) in 1 hr . displacement of plane $=6 \times(-48 \mathbf{i}+14 \mathbf{j})={ }^{-} 288 \mathbf{i}+84 \mathbf{j}$
speed $=\sqrt{ }\left[\left({ }^{-} 288\right)^{2}+84^{2}\right]=\sqrt{ } 90000=300 \mathrm{kmh}^{-1}$
(c)

req'd angle $=\tan ^{-1} \frac{14}{48}=16.26^{\circ}$
M1 A1
\therefore bearing $=16.26+270=286^{\circ}($ nearest deg $)$
A1
5. (a) e.g. since acc ${ }^{\mathrm{n}}$ and decel ${ }^{\mathrm{n}}$ are uniform, time for decel ${ }^{\mathrm{n}}=\frac{1}{1.5}$ time for acc $^{\mathrm{n}}$
\therefore decel $^{\mathrm{n}}=4$ seconds, so total time $=6+50+4=60$ seconds
(b) velocity
(ms^{-1})

B3

(c) area under graph $=\frac{1}{2}(6)(V)+50 V+\frac{1}{2}(4)(V)=1320$ M1
$55 V=1320$ so $V=24 \mathrm{~ms}^{-1}$
M1 A1
(d) car accelerates more quickly at first, but acceleration decreases throughout the six seconds

B2
(11)
6. (a) uniform - same density throughout

B1
rod - bench probably fairly rigid, doesn't bend very much
B1
(b)

bench on pt. of tilting so $R=0$
B1
moments about $S: 55 g(0.3)-M g(1.1)=0$
M2
$1.1 M=16.5 \therefore M=15 \mathrm{~kg}$
A1
(c)

resolve $\uparrow: R+S=33 g+15 g=48 g$
M1
moments about $S: 33 g(0.7)+15 g(1.1)-R(2.2)=0$
M1
$2.2 R=23.1 g+16.5 g \therefore R=18 g$
M1 A1
$S=30 g \therefore S: R=30 g: 18 g=5: 3$
M1 A1
7. (a) for car + caravan, eqn. of motion is $3000-900-2100 g \sin \alpha=2100 a \quad$ M2 A1
$2100-1470=2100 a \therefore a=0.3 \mathrm{~ms}^{-2}$
M1 A1
(b) for caravan, $T-500-850 g \sin \alpha=850 \times 0.3$

M1
$T-500-595=255 \therefore T=1350 \mathrm{~N}$
M1 A1
(c) $u=0, a=0.3, s=540$ use $v^{2}=u^{2}+2 a s$

M1
$v^{2}=0+2(0.3)(540)=324 \therefore v=18 \mathrm{~ms}^{-1}$
M1 A1
(d) $D-900=0 \therefore D=900 \mathrm{~N}$

M1 A1
$\%$ reduction $=\frac{3000-900}{3000} \times 100=70 \%$
M1 A1

Performance Record - M1 Paper I

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	$\begin{aligned} & \hline \mathbf{i}, \mathbf{j}, \\ & \text { forces } \end{aligned}$	statics	cons. of mom., impulse, friction	rel. posn. \mathbf{i}, \mathbf{j}	vel time graph, uniform accel.	moments	connected bodies	
Marks	5	10	11	11	11	12	15	75
Student								
							-	

